

Clinical Experience with Pressure Sensor Based Autoregulation of Blood Flow in an Artificial Heart

Ivan Netuka, Yuriy Pya, Christian Latrémouille, J.C. Perlès, Bastien Poitier, <u>Piet Jansen</u> June 27th, 2019

Disclosures

• Carmat TAH is an investigational device, not available in the USA

• Carmat SA employee

Why Carmat TAH?

- To provide Physiological Heart Replacement Therapy for patients with end stage heart failure*
 - Biventricular failure or risk for RV failure if treated with LVAD
 - Treatment-refractory malignant arrhythmias
 - Restrictive or constrictive etiology (hypertrophic, amyloidosis)
- To address shortcomings of current TAH / bi-ventricular support options
 - Poor hemocompatibility
 - Poor QOL
 - Poor flow regulation
 - Poor pulsatility (BiVAD)
 - Aortic insufficiency (BiVAD)

LVAD: recurring issue of failure of the unassisted right ventricle

- Failure of the right ventricle in patients treated with LVAD:
 - 6-month incidence: 10%*
 - 24-month incidence: 32%**
- Associated with other undesirable events: congestion, impaired renal function, hepatic impairment, infection

Carmat: *Physiological Heart Replacement Therapy*

How does the device work?

Principle:

Volumetric pumps move the silicone oil within the bag to activate the hybrid membranes allowing the blood to enter and leave the chambers

Mode of operation:

1 – Blood flow assessment:

Preload measured by pressure sensors every millisecond to calculate flow required

2 – Flow auto-regulation:

Speed and direction of rotation of volumetric pumps adapted every 2 milliseconds to deliver the necessary pulsatile flow

3 – Flow Control:

Position of the membranes checked by 2 ultrasound sensors every 2 milliseconds to ensure <u>full ejection at every beat</u>, to avoid stasis in blood compartment

System Configuration

Implantation Technique

TEE: de-airing/weaning

Autoregulation

Objective ۲

Left flow

L/min

4,7

4

- Automatically adapt flow to patient needs
- Two main parameters

Right flow

L/min

4,3

Patient medical data

- RV filling pressure (target = 0)
- Delta L-R filling pressure (target = 0)

bpm

Autoregulation initiated after CPB weaning

First Clinical Experience with Autoregulation

The Journal of Heart and Lung Transplantation

RESEARCH CORRESPONDENCE

Effects of pre-load variations on hemodynamic parameters with a pulsatile autoregulated artificial heart during the early post-operative period

Philippe Bizouarn, MD, PhD,^a Jean-Christian Roussel, MD, PhD,^b Jean-Noël Trochu, MD, PhD,^b Jean-Christophe Perlès, MSc,^c and Christian Latrémouille, MD, PhD^d

From the ^aService d'Anesthésie-Réanimation, Hôpital Guillaume et René Laënnec, Nantes, France; ^bInstitut du Thorax, Hôpital Guillaume et René Laënnec, Université de Nantes, Nantes, France; ^cCarmat SA, Vélizy-Villacoublay, France; and the ^dAP-HP, European Georges Pompidou Hospital, Cardiovascular Surgery Department, Paris, France

JHLT 2018 Jan;37(1):161-163

Study Design

- Objectives
 - Evaluate variation in cardiac output in response to preload changes
 - Evaluate the need for device settings change
- Methods
 - First 10 patients cohort of the CE Mark study, representing a cumulative support duration of 1,947 days (5.3 years).
 - Device data log analysis
- Endpoint

Number of device setting changes during clinical course

Patient Characteristics and Clinical Course

Age	60 (35-70)
Diagnosis	4 IHD, 6 DCM
Indication	6 BTT/BTC, 4 DT
INTERMACS	All 2 or 3

- 8/10 patients were discharged from ICU; median time to discharge 8 days
- 7/10 patients were discharged from hospital; median time to discharge 53 days
- Longest duration (ongoing) 16 months

	Baseline	Day 1	Day 7	M1	M3	M6	
LAP (mmHg)	28±5	10±3	11±6	Catheter not in place			
CVP (mmHg)	15±5	10±3	12±6	Catheter not in place			
SBP (mmHg)	99±10	105±16	110±12	117±13	114±7	125±23	
DBP (mmHg)	66±5	57±7	60±11	68±12	75±8	79±6	
CO (L/min)	2.9±0.7	5.7±0.6	5.9±0.8	6.1±0.7	5.9±0.6	6.1±0.6	

Device settings change

- Device settings were changed 20 times in 10 patients, during 5.3 pt.yrs observation
 - 65% occurred in the first month (ICU),
 - 90% of the changes were done on 1 setting (RV admission pressure)
 - Only 1 change was needed after hospital discharge
- With experience, less changes were performed

Device Setting Changes /Patient

Hemodynamic Performance

Exercise-induced flow changes

Clinical Outcome and Safety Profile

	Comparative outcomes 10 cases - 6 months follow up							
	Survival rate	Bleeding – surgical repair	Stroke	Gastrointestinal bleeding	Driveline infection			
CARMAT	70%	40%	0%	0%	0%			
SynCardia*	54% - 62%	41%	23%	20%	22%			
BIVAD**	46% - 68%	n/a	7%	7%	7%			
LVAD***	90% - 92%	14%	8%	8%	10%			

* Kirklin JK et al., JHLT 2018;37:685-691. Arabia F et al., JHLT, 2018;37:1304–1312. Demondion P et al., EJCS. 2013 Nov;44(5):843-8

** Lavee J et al., JHLT 2018;37:1399-1402. Arabia F et al., ATS 2018;105:548-56

*** Strueber M et al. JACC 2011;57:1375-82. Netuka I et al., JACC 2015;66:2579-89

Conclusions

- Carmat automatic flow regulation is controlled effectively by preload-sensitive algorithm
- Autoregulated flow results in immediate and durable hemodynamic recovery
- Autoregulation: « Start and Forget »
- Autoregulation provides the hemodynamic condition for positive safety profile and improved quality of life

Merci Beaucoup!

67 y/o man, DT indication, 16 months on Carmat

